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Long waves on a rotating earth in the presence of a 
semi-infinite barrier 

By J. CREASE 
National Institute of Oceanography, Wormley, Survey 

(Receizjed 15 November 1955) 

SUMMARY 
In this paper the problem is considered of long gravity waves 

approaching a semi-infinite barrier which extends parallel to the 
wave crests, the whole system being in rotation. It is well known 
that, when the rotation is zero, there is a ' shadow region ' behind 
the barrier in which the disturbance diminishes rapidly with 
distance from the edge. However, it is shown that the rotation 
gives rise to an additional wave in the shadow region. The crests 
of this wave are at right-angles to the incident wave, and it travels 
along the barrier without attenuation in that direction. The 
.amplitude falls off exponentially with distance from the barrier, a's 
in a Kelvin wave. The amplitude at the barrier may exceed 
that of the incident waves. 

The problem arises in connexion with the propagation of tides 
and storm surges in the ocean. 

1. INTRODUCTION 
T h e  work described in this paper arises from certain aspects of an 

investigation into the origin of storm surges. A particular example of 
such a surge is the raising in sea-level which occurred progressively round 
the North Sea and produced such serious flooding in February 1953, but 
it is known that many surges pass unnoticed because they do not result in 
serious destruction (Corkan 1948, Rossiter 1954). Some may be gener- 
ated by atmospheric disturbances over the North Sea itself, but others 
appear to originate outside the sea and then propagate into and around it 
in an anti-clockwise direction as free waves on the rotating earth. 

Here we are concerned with a possible mechanism for the propagation 
of these free waves from a region to the west and north-west of the British 
Isles into the North Sea. However, the results may have more general 
applications in oceanography and meteorology. 

The particle velocity associated with long waves on a rotating earth is 
itself rotatory when conditions are uniform along the wave crests (Proudman 
1953, p. 262). If such a system of simple harmonic plane waves is incident 
normally on a semi-infinite barrier, one might expect that after the waves 
have passed the barrier their transverse velocity components act as a 
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Source for waves propagating into the region behind the barrier. In the 
rather similar problem in acoustics, there is no such source and this region 
is ‘shadowed ’ from the incident waves, the only disturbance being due to 
diffraction effects arising at the edge of the barrier and dying out with 
distance away from it (Lamb 1932, p. 538). 

In this paper, we investigate the effect of the rotation on the disturbance 
behind the barrier. It is found that there is indeed a system of progressive 
waves travelling along the barrier when it lies in the right half of the plane, 
as in.figure 1 (the sense of rotation is assumed to be anti-clockwise as in 
the northern hemisphere). The crest height of these secondary waves is 
not uniform but decreases exponentially away from the barrier as in waves 
of Kelvin type (Proudman 1953, p. 253). The amplitude of the secondary 
waves is not attenuated with distance along the barrier. We calculate the 
amplitude of the waves at infinity, and show that for a certain range of 
frequencies they may exceed the amplitude of the incident waves. The 
disturbance along a path extending from the edge of the barrier in any 
other direction dies out rapidly with distance. 

2. THE EQUATIONS OF MOTION 

In this paper, we assume, as in most long-wave theory, that the vertical 
acceleration is small (Lamb 1932, p. 254). The equation of motion in the 
vertical direction then reduces to the hydrostatic equation p =gp,,(z + [), 
wherep is the pressure, z is the depth below the mean free surface, 5 is the 
elevation of the free surface above its mean level, and p o  is the density. 

The horizontal equations of motion become, on substitution of the 
hydrostatic equation and neglect of the non-linear and viscous terms 
(Proudman 1953, p. 220), 

- y v =  -g - ax’ I au - 
at 

av 

where u, v are the components of velocity in the horizontal (x, y)-plane, and 
are functions of x, y, t only. The Coriolis parameter y is equal to 2w sin+, 
where o is the angular velocity of the earth and 4 is the north latitude. 

The equation of continuity is (Proudman 1953, p. 220) 

where h is the mean depth of water, which is assumed constant and large 
compared with 5. 

From these equations, a differential equation for 5 can be derived : 
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If 5 is assumed to have a simple harmonic time factor exp( - i d ) ,  equation 
(3) becomes 

where 
and the elevation 5 is now to be taken as a function of x, y only. 
out the paper we assume o>y. 

k2 = ( a 2  - y2)/gh, 
Through- 

I 
I 
I 

x= ot 

TI1 
incident wave 

Figure 1 

The conditions of the problem are that waves of the form 
a exp[i(rZy - m t ) ]  are incident, from y = - co, on a semi-infinite barrier 
placed at y=O, x>O (see figure 1). The boundary condition on the 
barrier is u = 0. To satisfy the radiation condition at infinity, it is easiesf 
to use Copson’s condition that K has a small positive imaginary part, and 
that the secondary waves due to the presence of the barrier tend to zero as 
r --f co where ~ = ( x ~ + y ~ ) l / ~  (Baker & Copson 1950, p. 154). When the 
solution is completed, we may let the imaginary part of k tend to zero. 
This, or an equivalent condition, is usually assumed in practice, although 
it appears never to have been rigorously justified in the case of a boundary 
extending to infinity (Peters & Stoker 1954). 

By substitution of the boundary condition on z, into equations (l), the 
boundary condition on 5 is found to be 

, 
where p = y/u < 1.  



Long waves on a rotating earth in presence of semi-injinite barrier 

3 .  THE INTEGRAL EQUATION 

We follow the method used by Karp (1950) and Copson (1946) in 
deriving an integral equation which, when solved, enables 5 to be found. 
The elevation c(x,y) in the interior of a contour C is first expressed in 
terms of a Green’s function and the boundary values of 5(x,y) and 
a[(x,y)/an, where a/& denotes differentiation along the outward normal to 
the boundary. Thus, 

89 

a a 
“ C  an, an, 

S(%Y) = [ { G(x,y ; x0,yo) - S(x07yo) - 5(~o,Yo) - G(x,y ; x0,Yo)) dS0’ (6) 

where ds, is the element of arc length and G(x,y ; x,,y,) satisfies 

S(x) being the Dirac delta function. 
the effect of a source at x = x o ,  y = y o .  

The Green’s function thus represents 

We choose the free-space Green’s function 

G(x,y ; xo,yo) = $iHbl’[k((x - xo)’ + ( y  - ~ o ) ~ } ~ ’ ~ ] ,  (8) 
where HP) is the Hankel function of the first kind (Watson 1944, p. 73). 
The contour C is a large circle about the origin whose radius ultimately 
tends to infinity, but it is indented .along the positive x-axis to exclude the 
barrier (figure 1).  Then 

where [5]  = <+(x,O) - [-(x,O), the difference between 5 on the two sides of the 
barrier, and C, is the circular part of C. If we now take 5’ to represent 
the secondary waves arising from the incidence of the primary waves 
uexp(iky) on the barrier, equation (9) may be written as 

Finally, by the radiation condition, the integral round C, tends to zero as 
the radius of the circle tends to to, and 

( 10) 

The boundary condition on 5 (and therefore on [[I) is now substituted 
from equation ( 5 )  into equation (10); and, after an integration by parts, it 
follows that 

=!om{“J(g +ipz&=o aG dx, + a  exp(iky), 

if it is assumed that [5]  is bounded and that it is zero at the origin. This 
imposition of a specific behaviour on 5 as x --f 0 is necessary in this type of 
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problem, and a condition of continuity at the origin would seem to be the 
most appropriate in the present case (Karp 1950). 

When the operator (a /ay- ipa/ax)  is applied to equation (11) on y=O, 
it follows from the boundary condition, equation (5), that 

which is valid only for x>O. 

4. THE SOLUTION OF THE INTEGRAL EQUATION 

Equation (12) is solved by the Wiener-Hopf method (Titchmarsh 1937, 
p. 339), of which only the outline is given below. 

Let 

x>o, 
f (4 = 0 

= [{I 

x>o, 
g(x) = a function defined by (14) 

= O  

x >o, 4(x) = 0 
= aik 

Then equation (12) may be rewritten as 
m 

gW= 4(x) + I f ( X 0 )  4. - xo) dxo , 
-03 

which now holds for all x, and defines ~ ( x )  for x <O. 
Equation (14) may be solved by taiing the Fourier transform of both 

sides of the equation. 

where G(a), Q(a), L(a), F (a )  are the Fourier transforms of g(x), q(x), I(%), 
f ( x )  respectively. Now, 

We then find that 

G(a) = Q(4 + L(a)F(a), (15) 

ak 
- - m  a 

a, 

Q(a) = 1 ~ ( x )  exp( - iax)  dx = uik exp( - iax)  d x  = - , 

and Q(a) is regular for Y{a}<O. Similarly, we have (Erdelyi 1955) 
i{k' - a'( 1 -9')) 

L(a)= 2(k2-Cr2)1/2 ' 

and L(a)  is regular for I 9 { a } )  < 9 { k } .  Next, we assume thatf(x) = O(eikl"), 
with 4{kl} > 0 as x --f + 03, so that f(x) is bounded at + 03. It then follows 
that F(a)  is regular and bounded for 9{a)<O. Similarly, it follows from 
equation (14) that lg(x)I = O{ exp( - 9 { k }  I X I  )} as x -+ - co, and therefore that 
G(a) is regular and bounded for Y { a }  > - 9 { k } .  The domains of regularity 
of the various transforms in the complex a-plane are shown in figure 2. 
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Equation (1 5 )  now becomes 

The object now is to factorize L(a)  into two parts L+(a) and L ( a ) ,  one 
regular in an upper half-plane of the complex variable a, the other in the 
lower half-plane, and then to express equation (16) as the equality of two 

Figure 2. Domains of regularity of the transforms. 

functions that are regular in two half-planes which have a common strip of 
regularity. The resulting equation is 

F b ) .  

(17) 

-- 

The left-hand side of equation (17) is regular for ${a)> - 9 { k } ,  and the 
right-hand side for 9{a}<O. Therefore, as both sides are regular in the 
strip O > $ { M ) >  -${A), they define a function E(a) which is regular over 
the entire a-plane by analytic continuation. 

It follows from equation (17) that, as G(a), F(a)  are bounded in their 
respective half planes, E(a)  is O( I M I  l/z) for the lower half plane and O( I ccl-l/a) 
for the upper half plane. as 1 a1 + co. It then follows, Thus E ( M )  is O( I 
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from an extension to Liouville’s theorem, that E(a) is a polynomial of order 
less than 1/2 and therefore a constant. This constant is zero because 
E(a) = O(lal-1/2) as 1.1 -+a, in the upper half plane (Karp 1950). Therefore, 

i{K - a( 1 -p2)1/2} ak1l2 
F(a)+ -y = 0, 2( k - a)l’2 

so that 2iak1l2(K - a)li2 
a{K - a( 1 -p2)1I2} ’ F(u) = 

Although the explicit form off(x) will not be required, it could now bL 
calculated by means of the Fourier reciprocal theorem : 

m --iE 

f(x) = 1 1 F(E) exp(iax) da 0 <E <Y{K}. (19). 2n 

5. THE SOLUTION 5(x,y) 
From equation (ll), we have 

m 

= \ f ( x o )  m(x - xo) dx,, + a  exp(iky), (20) . - m  

where 

and its transform is (Erdleyi 1955) 

(22) 

which is regular in the strip I3{a} l<3{K} .  
theorem states that 

m 1 m- ia  1 f(x,,) m(x - x,,) dx,, = -i 
I - -OD 277 - m - &  

The Fourier convolution 

F(a) M(a) exp(iax) da. 

By this theorem, equation (20) may be written as 
2iak1/2(k - a)lj2 1 

a(K-as) z 
x exp [i{ax + lyl(K2 - a2)1/2}] du + a exp(iky), (23) 

where s2 = 1 -p2.  For convenience we now split the right-hand side of - 
equation (23) into three parts : 

where 
1; = 51 + 5 2  + 5 3 ,  

51 = a exp(iKy), 1 
I 

(24) 

i 
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Copson (1946) has shown how 
integrals of this nature may be transformed into more recognizable forms. 
Let x = p  cos 8, 3' = p  sin 8, and consider the integral in the first quadrant 
0 ,<8 ,<71/2. Then the line of integration may be deformed to that given by 

We consider first the expression c3. 

_ C - -  - 
/ 

0 
0 / I=-- 

1 7 = + m  L a. 
--OQ - ie. . .  

&=-k 

Figure 3. Paths of integration in a-plane. 

a=kcos(O+iT), with T real and with the limits - co, co (figure 3). After 
some manipulation it is found that 

OD sin i(e - ip)cosh$T ?!-, coshT-coS(e-ip) exp(ikp cosh T )  d ~ ,  (25)  

sini(O-iP)coshi~ 
,, cosh ~-cos(e-i/?) = 2* sinh &P explikp cos(8 - ip)>J 

?r 

x exp[ikp(cosh T - cos(8 - i/?))] d ~ ,  (26) 
where cosh p = l/s. 

Consider now the integral 

Then differentiation under the integral sign leads to 

= Irn icosh+Tsin&$exp[ix(coshT-cos+)] dr, 
dx 0 

since this integral is uniformly convergent for x>6,  where 8 is any small 
positive number. Hence 

4 2  exp(2ix sin2 &$) 
d* dx = (s> i expoin) sin 4' .l/2 
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This may be integrated to yield 

On putting x=O in equation (27), we find 
I(0) = +r. 

Thus, as I (x )  given in equation (28) is uniformly convergent for x 3 0, 

J -a 

On substituting equation (29) into equation (26), we obtain 

(zkp)& sinhW+i@) 
exp( -;A2) dh, (30) I, 

2a 1 --s 

( a = -  p(s> exp( - ih2) dA], (3 1) 

where z = (2Kp)1/2 sinh &(p + i8). 
When considering c3 in the other quadrants, the same type of trans- 

formation is used except that, for x<O, the a-contour is doubled back round 
the branch line which radiates from a =  -K. The results may be ex- 
pressed by the same equation (31) provided 0 is allowed to range from 0 to 
2rr. 

Neither c2 nor 
These functions may be 

expected to represent the usual diffraction and reflection effects of acoustics 
when the boundary condition is that the normal gradient of the dependent 
variable is zero on the barrier. 

Before stating the solution, it should be mentioned that the deformation 
of the contour when x>O involves crossing a pole at u=O. This pole 
contributes a term which cancels with c1 for y > O  (in the shadow zone) and 
reinforces it for y t0 (total reflection). When x< 0, the pole is not crossed. 

The transformation of i2 proceeds along similar lines. 
contains the rotational parameters at all. 

The solution i 1+c2  may now be stated in the form 

a 
il + 5 2 =  ~.(e.p(~Kr>+exp(~ky>) - -pj exp(- th){exp(iky) 

l:b H+X+ e) (2kp)) sin t(&n- e) 
exp(iX2)dh + exp(iky) j exp(iA2) dh}, (32) 

0 

which is similar to the solution given by Lamb (1942, p. 540). 
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6. DISCUSSION 

The part of the solution 

95 

The discussion will be concerned only with c3, which represents the 
rotational effects. is well known and has 
been fully investigated in the past. 

The expression in square brackets in equation (31) occurs in other 
diffraction problems, but the tabulation of it appears to be-confined to a 
short table in the range 0 (-01) 1.0 for I z J and 0" (1") 45" for arg z (Clemmow 
& Mumford 1952). The function would be determined for all values of 
argz by a table covering the range - 45" < argx ~45". To obtain a general 
idea of the behaviour of c3 near the origin, further values of the function 
have been computed. In figure 4, the real and imaginary parts of c3 are 

0 . .  

i$ - 0 4 3  

o a  

' v / ( 9 4 2  0 4 ~ ~ - ~ q  5'/(3qk 

,-. 
I -  1 0  , - m - p .  2 ,  : ' 0  

-_. 0 0  
O ,  

:,"--' I ,  , -ko, 'L-. ' - - _ -  .. , 
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Thus only in the region just behind the barrier are waves propagated which 
do not die out away from the edge of the barrier. It follows from equation 
(33) that, when p > 3 / 5 ,  these secondary waves are, at large distances down 
the barrier, larger in amplitude than the incident waves, although they die 
Q U t  exponentially away from the barrier. 

For waves to be propagated into the region behind it, the barrier must 
lie in the right half of the x-axis, as in the problem studied. If it is in the 
left half (x<O), we may expect waves progressing down the front of the 
barrier. This leads to the interesting possibility that, if the barrier is of 
finite length (an island in mid ocean), a certain amount of energy will be 
trapped in the form of a wave progressing round the barrier in a clockwise 
direction. 

I am indebted to Mrs P. Edwards for the computation of the integral 
irr equation (31). 
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